LibRar.Org.Ua — Бібліотека українських авторефератів


Головна Хімічні науки → Рівноважна статистична теорія складних та асоційованих рідин в атом-атомному підході

of polyions, while each polyion may bond any number of counterions A generalized version of the Ornstein-Zernike equation, which involves n+1 counterion densities and one polyion density, together with hypernetted-chain-like closure conditions are derived. The simplest two-density version of the theory yields very good agreement with computer simulations for both thermodynamical and structural properties of such systems. This good agreement extends into the region of parameter space where more traditional theories does not have a covergent solution. An analytical version of the theory is developed in the frames of the corresponding extension of the mean spherical approximation. Multidensity integral equation theory for associating fluids with off center attractive sites is extended and applyed to investigate the effects of dimerization, polymerization and formation of the network of hydrogen bonds on the equilibrium properties of the number of the associating fluid models. In particular two and three dimentional models of water has been studied. The theory is able to reproduce some of the anomalies of liquid water properties (such as anomaly in temperature dependence of the isotermal compressibility and close to reality low value of the critical compressibility factor). It is demonstrated, that integral equation theory of Chandler-Silbey-Ladanyi for site-site molecular fluids is the limiting case of the two-density version of the present theory in the complete association limit. Extension of the Chandler-Silbey-Ladanyi equation for semiflexible molecular site-site fluids is proposed. The general method of generating diagramatically consistent site-site integral equations for macromolecular fluids is developed. This is based on the complete association limit of the corresponding multidensity integral equation formalism formulated for the appropriate model of associating fluid, which forms macromolecules with a certain previously defined intramolecular structure upon association. Obtained Ornstein-Zernike-like equations are used to systematically investigate an equilibrium properties (distribution functions, equation of state, phase behaviour) of the number of the models of macromolecular (homo- and heteronuclear chain, star, ring oligomer molecules) fluids, solutions of charged oligomers. In particular it was demonstrated, that the equilibrium properties of the system of ring molecules of sufficiently large size are independent of that size and can be used to model the properties of the fluid of long chain molecules. General method of evaluating the thermodynamical properties of associating and macromolecular fluids in the frames of the multidensity version of the MSA is developed. Analytical description of the molecular Lennard-Jones fluid thermodynamical properties (equation of state, liquid-gas phase envelope) in terms of the analytical solution of the associating MSA for the hard-core Yukawa fluid is proposed. For the set of the models, which are used to describe such complex and associating fluids as water, polymer fluids and solutions, colloid suspensions, electrolyte and polyelectrolyte solutions, micellar solutions, microemulsions, etc., an analytical and numerical methods of solution of the obtained Ornstein-Zernike equations are proposed, systematic investigation of their thermodynamical (equation of state, phase equilibrium) and structural (distribution functions, structure factors) properties is carried out. In most of the cases good agreement between theoretical results and results of the computer simulation was obtained. Several examples of the application of the proposed approach for the description and interpretation of the experimental data are considered.

Key words: associating liquids, complex liquids, multidensity approach, Ornstein-Zernike equation, polyelectrolytes, colloids, highly asymmetric electrolytes.

Підписано до друку 27.09.00. Формат 60x84/I6.

Друкарських листів 2,0. Тираж 100. Зам. No 31.

Друк ВМС, 79007 м. Львів, просп. Свободи, 12.

1 Lemberg H.L., Stillinger F.H. J.Chem.Phys. 62, 1677(1975);Chandler D.,Pratt L.R., J.Chem.Phys., 65, 2925(1976); Stell G., Patey G.N., Hye J. Adv.Chem.Phys. 48, 183(1981)

2 Dolezalek F., Z.Phys.Chem. 64, 727(1908)

3 Frenkel J., J.Chem.Phys. 7, 200(1939)

4 Band W., J.Chem.Phys. 7, 324(1939)

5 Stillinger F.Y., J.Chem.Phys. 38, 1486(1963)

6 Andersen H.C., J.Chem.Phys. 59, 4714(1973); 61, 4985(1974)

7 Chandler D.,Pratt L.R., J.Chem.Phys., 65, 2925(1976);Pratt L.R.,Chandler D., ibid 66, 147(1977); ibid 67, 3683(1977)

8 Bjerrum N., Kgl.Danske Vidensk.Selsk.Mat.-Fys.Medd. 7, 1(1926)

9 див. огляд: Stell G., J.Stat.Phys. 78, 197(1995)

10 Wood R.H.,Lilley T.H., Thompson P.T., J.C.S. Faraday Trans. I, 1301(1978)

11 Wertheim M.S., J.Stat.Phys., 35, 19;35(1984); 42, 459;477(1986)

12 Trokhymchuk A., Pizio O., Holovko M., Sokolovski S., J.Phys.Chem. 100, 17004(1996)

13 Zhou Y.,Stell G. J.Chem.Phys., 102,8089(1995)

14 Cassin G., Duda Yu.Ja., Holovko M.F., Badiali J.-P., Pileni V., J.Chem.Phys. 107, 2683(1997)

15 Silverstein K.A.T., Haymet A.D.J., Dill K.A., J.Am.Chem.Soc. 120, 3166(1998)

16 Kolafa J.,Nezbeda I., Mol.Phys. 61, 161(1987)

17 Nezbeda I.,Iglesias-Silva G., Mol.Phys. 69, 767(1990)

18 Wang J.,Haymet A.D.J., J.Chem.Soc.Faraday Trans. 90, 1245(1994)

19 Krienke H., Barthel J., Holovko M.F., Kapko V.I., Protsykevich I.A., Cond.Matt.Phys. 6, 23(2000)

20 Zhou Y., Yeh S.,Stell G., J.Chem.Phys. 102, 5785(1995)

21 Fisher M.E.,Levin Y., Phys.Rev.Lett. 71, 3826(1993);Zhou Y.,Yeh S.,Stell G., J.Chem.Phys. 102, 5785(1995)

22 Ebeling W.,Grigo M. Ann.Phys. 37, 21(1980)

23 Yethiraj A.,Hall C.K., J.Chem.Phys., 94, 3943(1991)

24 Brown S.,Szamel G., J.Chem.Phys. 108, 4705(1998)

25 Chang J.,Kim H., J.Chem.Phys. 109,2579(1998)

26 von Solms N.,Chiew Y.C., J.Chem.Phys. 111, 4839(1999)

27 Belloni L., Phys.Rev.Lett. 57,2026(1986)